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Let J be an abelian semi-group.

Ĵ denotes the abelian group :

Ĵ = J
⊕
J/ ∼

(ξ, η) ∼ (ξ′, η′) ⇐⇒ ∃ θ ∈ J with

ξ + η′ + θ = ξ′ + η + θ

Example N = {1, 2, 3, . . .}

N̂ = Z



Let Λ be a ring with unit 1Λ.

Mn(Λ) denotes the ring of all n× n matrices

[aij ] with each aij ∈ Λ. n = 1, 2, 3, . . .

Mn(Λ) is again a ring with unit.



GL(n,Λ) = { invertible elements of Mn(Λ)}

Pn(Λ) = {α ∈Mn(Λ)|α2 = α} n = 1, 2, 3 . . .

Definition

α, β ∈ Pn(Λ) are similar if ∃γ ∈ GL(n,Λ) with γαγ−1 = β.

Set P (Λ) = P1(Λ) ∪ P2(Λ) ∪ P3(Λ) ∪ . . .

Impose an equivalence relation stable similarity on P (Λ).



Definition

α ∈ Pn(Λ) and β ∈ Pm(Λ) are stably similar iff there exist

non-negative integers r, s with n+ r = m+ s and with

α

0

0

0

n r

and

β

0

0

0

m s

similar

Set J(Λ) = P (Λ)/(stable similarity).



J(Λ) = P (Λ)/(stable similarity)

J(Λ) is an abelian semi-group.

α+ β =

α

0

0

β

Definition

K0Λ = Ĵ(Λ)

This is the basic definition of K-theory.



Λ,Ω rings with unit

ϕ : Λ→ Ω ring homomorphism with ϕ(1Λ) = 1Ω

ϕ∗ : K0Λ→ K0Ω

ϕ∗[aij ] = [ϕ(aij)]

ϕ : K0Λ→ K0Ω is a homomorphism of abelian groups



Example

If Λ is a field, then [aij ], [bkl] in P (Λ) are stably similar iff

rank[aij ] = rank[bkl],

where the rank of an n× n matrix is the dimension (as a vector

space over Λ) of the sub vector space of Λn = Λ⊕ · · · ⊕ Λ

spanned by the rows of the matrix.

Hence if Λ is a field, J(Λ) = {0, 1, 2, 3, . . .} and K0Λ = Z.



X compact Hausdorff topological space

C(X) = {α : X → C|α is continuous}

C(X) is a ring with unit.

(α+ β)x = α(x) + β(x)

(αβ)x = α(x)β(x) x ∈ X, α, β ∈ C(X)

The unit is the constant function 1.

Definition (M. Atiyah - F. Hirzebruch)

Let X be a compact Hausdorff topological space.

K0(X) = K0C(X)



Example

S2 = {(t1, t2, t3) ∈ R3 | t21 + t22 + t23 = 1}

xj ∈ C(S2) xj(t1, t2, t3) = tj j = 1, 2, 3

K0C(S2) = Z⊕ Z

[1]


1 + x3

2

x1 + ix2

2
x1 − ix2

2

1− x3

2


i =
√
−1









C∗ algebras

Definition

A Banach algebra is an algebra A over C with a given norm ‖ ‖

‖ ‖ : A→ {t ∈ R | t = 0}

such that A is a complete normed algebra:

‖λa‖ = |λ|‖a‖ λ ∈ C, a ∈ A
‖a+ b‖ ≤ ‖a‖+ ‖b‖ a, b ∈ A
‖ab‖ ≤ ‖a‖‖b‖ a, b ∈ A
‖a‖ = 0⇐⇒ a = 0

Every Cauchy sequence is convergent in A (with respect to the
metric ‖a− b‖).



C∗ algebras

A C∗ algebra ∗ : A→ A
A = (A, ‖ ‖ , ∗) a 7→ a∗

(A, ‖ ‖) is a Banach algebra

(a∗)∗ = a

(a+ b)∗ = a∗ + b∗

(ab)∗ = b∗a∗

(λa)∗ = λa∗ a, b ∈ A, λ ∈ C
‖aa∗‖ = ‖a‖2 = ‖a∗‖2

A ∗-homomorphism is an algebra homomorphism ϕ : A→ B such
that ϕ(a∗) = (ϕ(a))∗ ∀a ∈ A.

Lemma

If ϕ : A→ B is a ∗-homomorphism, then ‖ϕ(a)‖ 5 ‖a‖ ∀a ∈ A.



EXAMPLES OF C∗ ALGEBRAS

Example

X topological space, Hausdorff, locally compact

X+ = one-point compactification of X

= X ∪ {p∞}
C0(X) =

{
α : X+ → C | α continuous, α(p∞) = 0

}
‖α‖ = sup

p∈X
|α(p)|

α∗(p) = α(p)

(α+ β)(p) = α(p) + β(p) p ∈ X
(αβ)(p) = α(p)β(p)

(λα(p) = λα(p) λ ∈ C

If X is compact Hausdorff, then

C0(X) = C(X) = {α : X → C | α continuous}



Example

H separable Hilbert space
separable = H admits a countable (or finite) orthonormal basis.

L(H) = {bounded operators T : H → H}
‖T‖ = sup

u∈H
‖u‖=1

‖Tu‖ operator norm
‖u‖=〈u,u〉1/2

T ∗ = adjoint of T 〈Tu, v〉 = 〈u, T ∗v〉
u,v∈H

(T + S)u = Tu+ Su

(TS)u = T (Su)

(λT )u = λ(Tu) λ ∈ C



G topological group
locally compact
Hausdorff
second countable
(second countable = The topology of G has a countable

base.)

Examples

Lie groups (π0(G) finite) SL(n,R)
p-adic groups SL(n,Qp)
adelic groups SL(n,A)
discrete groups SL(n,Z)



G topological group
locally compact
Hausdorff
second countable

Example

C∗rG the reduced C∗ algebra of G
Fix a left-invariant Haar measure dg for G
“left-invariant” = whenever f : G→ C is continuous and
compactly supported∫

G
f(γg)dg =

∫
G
f(g)dg ∀γ ∈ G

L2G Hilbert space
L2G =

{
u : G→ C |

∫
G |u(g)|2dg <∞

}
〈u, v〉 =

∫
G u(g)v(g)dg u, v ∈ L2G



L(L2G) = C∗ algebra of all bounded operators T : L2G→ L2G

CcG = {f : G→ C | f is continuous and f has compact support}

CcG is an algebra

(λf)g = λ(fg) λ ∈ C g ∈ G

(f + h)g = fg + hg

Multiplication in CcG is convolution

(f ∗ h)g0 =

∫
G
f(g)h(g−1g0)dg g0 ∈ G



0→ CcG→ L(L2G)

Injection of algebras
f 7→ Tf

Tf (u) = f ∗ u u ∈ L2G

(f ∗ u)g0 =
∫
G f(g)u(g−1g0)dg g0 ∈ G

C∗rG ⊂ L(L2G)

C∗rG = CcG = closure of CcG in the operator norm

C∗rG is a sub C∗ algebra of L(L2G)



A C∗ algebra (or a Banach algebra) with unit 1A.

Define abelian groups K1A,K2A,K3A, ... as follows :

GL(n,A) is a topological group.

The norm ‖ ‖ of A topologizes GL(n,A).

GL(n,A) embeds into GL(n+ 1, A).

GL(n,A) ↪→ GL(n+ 1, A)[ a11 ... a1n
...

...
an1 ... ann

]
7→

 a11 ... a1n 0
...

...
...

an1 ... ann 0
0 ... 0 1A


GLA = lim

n→∞
GL(n,A) =

⋃∞
n=1 GL(n,A)



GLA = lim
n→∞

GL(n,A) =
⋃∞
n=1 GL(n,A)

Give GLA the direct limit topology.

This is the topology in which a set U ⊂ GLA is open if and only if

U ∩GL(n,A) is open in GL(n,A) for all n = 1, 2, 3, . . .



A C∗ algebra (or a Banach algebra) with unit 1A

K1A,K2A,K3A, ...

Definition

KjA := πj−1(GLA) j = 1, 2, 3, . . .

Ω2 GLA ∼ GLA Bott Periodicity

KjA ∼= Kj+2A j = 0, 1, 2, . . .

K0A K1A



A C∗ algebra (or a Banach algebra) with unit 1A

K0A = Kalg
0 A = Ĵ(A)

A = (A, ‖ ‖, ∗)

For K0A forget ‖ ‖ and ∗. View A as a ring with unit.

Define K0A as above using idempotent matrices.

For K1A cannot forget ‖ ‖ and ∗.

K0A K1A



A C∗ algebra (or a Banach algebra) with unit 1A

The Bott periodicity isomorphism

K0A = Ĵ(A) −→ K2A = π1GLA

assigns to α ∈ Pn(A) the loop of n× n invertible matrices

t 7→ I + (e2πit − 1)α t ∈ [0, 1]

I = the n× n identity matrix



A C∗ algebra (or a Banach algebra)

If A is not unital, adjoin a unit.

0 −→ A −→ Ã −→ C −→ 0

Define: KjA = KjÃ j = 1, 3, 5, . . .

KjA = Kernel(KjÃ −→ KjC) j = 0, 2, 4, . . .

KjA ∼= Kj+2A j = 0, 1, 2, . . .

K0A K1A



FUNCTORIALITY OF K-THEORY

A,B C∗ algebras

ϕ : A −→ B ∗- homomorphism

ϕ∗ : KjA −→ KjB j = 0, 1



G topological group
locally compact
Hausdorff
second countable
(second countable = topology of G has a countable base )

C∗rG the reduced C∗ algebra of G

Problem

KjC
∗
rG =? j = 0, 1

Conjecture (P. Baum - A. Connes)

µ : KG
j (EG)→ KjC

∗
exactG

is an isomorphism. j = 0, 1



REMARK.
If G is exact, then

C∗exactG = C∗rG

The only known examples of non-exact groups are the Gromov
groups
i.e. certain countable discrete groups which contain an expander in
the Cayley graph.

All other locally compact groups (Lie groups, discrete groups,
p-adic groups, adelic groups etc. etc.) are known to be exact.

So for all the groups that occur in “real life” can use C∗rG in the
statement of BC.



G locally compact Hausdorff second countable topological group

Conjecture (P. Baum - A. Connes)

If G is an exact group (i.e. if G is not one of the Gromov groups),
then

µ : KG
j (EG)→ KjC

∗
rG

is an isomorphism. j = 0, 1



Γ discrete (countable) group

M C∞-manifold, ∂M = ∅
Γ×M →M smooth, proper, co-compact action of Γ on M .

“smooth” = each γ ∈ Γ acts on M by a diffeomorphism.

“proper” = if ∆ is any compact subset of M , then
{γ ∈ Γ : ∆ ∩ γ∆ 6= ∅} is finite.

“co-compact” = the quotient space M/Γ is compact.



Γ discrete (countable) group

Remarks

For a smooth proper co-compact action of Γ on M :

1. If p ∈M , then {γ ∈ Γ : γp = p} is a finite subgroup of Γ.

2. M/Γ is a compact orbifold.

3. M is compact ⇐⇒ Γ is finite.



Γ discrete (countable) group

For the left side of BC,
shall now define abelian groups Ktop

j (Γ), j = 0, 1



Definition of Ktop
j (Γ) j = 0, 1

Consider pairs (M,E) such that

1. M is a C∞-manifold, ∂M = ∅, with a given smooth, proper
co-compact action of Γ.

Γ×M →M

2. M has a given Γ-equivariant Spinc-structure.

3. E is a Γ-equivariant C vector bundle on M .



Ktop
0 (Γ)⊕Ktop

1 (Γ) = {(M,E)}/ ∼

Addition will be disjoint union

(M,E) + (M,E′) = (M ∪M ′, E ∪ E′)

Each fiber of E is a finite dimensional vector space over C

dimC(Ep) <∞ p ∈M

The equivalence relation
Isomorphism (M,E) is isomorphic to (M ′, E′) iff ∃ a
Γ-equivariant diffeomorphism

ψ M →M ′

preserving the Γ-equivariant Spinc-structures on M,M ′ and with

ψ∗(E′) ∼= E



The equivalence relation ∼ will be generated by three elementary
steps

I Bordism

I Direct sum - disjoint union

I Vector bundle modification



Bordism (M0, E0) is bordant to (M1, E1) iff ∃ (W,E) such that:

1. W is a C∞ manifold with boundary, with a given smooth
proper co-compact action of Γ

Γ×W →W

2. W has a given equivariant Spinc-structure

3. E is a Γ-equivariant vector bundle on W

4. (∂W,E|∂W ) ∼= (M0, E0) ∪ (−M1, E1)



Direct sum - disjoint union
Let E,E′ be two Γ-equivariant vector bundles on M

(M,E) ∪ (M,E′) ∼ (M,E ⊕ E′)



Vector bundle modification
(M,E)
Let F be Γ-equivariant Spinc vector bundle on M
Assume that

dimR(Fp) ≡ 0 mod 2 p ∈M

for every fiber Fp of F

1 = M × R γ(p, t) = (γp, t)

γ ∈ Γ (p, t) ∈ 1

S(F ⊕ 1) := unit sphere bundle of F ⊕ 1

(M,E) ∼ (S(F ⊕ 1), β ⊗ π∗E)



S(F ⊕ 1)

π

��
M

This is a fibration with even-dimensional spheres as fibers
F ⊕ 1 is a Γ-equivariant Spinc vector bundle on M with odd
dimensional fibers.

(M,E) ∼ (S(F ⊕ 1), β ⊗ π∗E)



{(M,E)}/ ∼= Ktop
0 (Γ)⊕Ktop

1 (Γ)

Ktop
j (Γ) =

subgroup of {(M,E)}/ ∼
consisting of all (M,E) such that
every connected component of M
has dimension ≡ j mod 2, j = 0, 1



Notation: for (M,E), DE is the Dirac operator of M tensored
with E
F = spinor bundle of M
DE : C∞c (M,F ⊗ E)→ C∞c (M,F ⊗ E)



Ktop
j (Γ)→ Kj(C

∗
rΓ) j = 0, 1

(M,E) 7→ Index(DE)

Conjecture (BC). (P. Baum, A. Connes)

For any countable discrete exact group Γ

Ktop
j (Γ)→ Kj(C

∗
rΓ) j = 0, 1

is an isomorphism



Corollary

If BC conjecture is true for Γ, then

1. Every element of Kj(C
∗
rΓ) is of the form Index(DE) for some

(M,E) (surjectivity)

2. (M,E) and (M ′, E′) have

Index(DE) = Index(D′E′)

if and only if it is possible to pass from (M,E) to (M ′, E′) by
a finite sequence of the three elementary moves

I Bordism
I Direct sum - disjoint union
I Vector bundle modification

(injectivity)



Example. Let Γ be a finite group. Consider

Ktop
0 (Γ)→ K0(C∗rΓ)

(M,E) 7→ Index(DE)

when Γ is a finite group.

Since Γ is a finite group, the M in any (M,E) is compact.
Therefore

DE : C∞(S+ ⊗ E)→ C∞(S− ⊗ E)

has finite dimensional kernel and cokernel.
Then Index (DE):= kernel(DE) - cokernel(DE) ∈ R(Γ).
R(Γ):= the representation ring of Γ.



Γ a finite group. R(Γ):= the representation ring of Γ.

R(Γ) is a free abelian group with one generator for each
equivalence class of irreducible representations
(on C vector spaces) of Γ.

Ktop
0 (Γ) ∼= R(Γ)

Ktop
1 (Γ) = 0

This is proved using Γ-equivariant Bott periodicity
(i.e. same as proof in lecture 2 that K0(·) = Z ).



BC (and BC with coefficients) are for topological groups G which
are locally compact, Hausdorff, and second countable.

EG denotes the universal example for proper actions of G.

EXAMPLE. If Γ is a (countable) discrete group, then
EΓ can be taken to be the convex hull of Γ within l(Γ ).



Example

Give Γ the measure in which each γ ∈ Γ has mass one.
Consider the Hilbert space l(Γ ).
Γ acts on l(Γ ) via the (left) regular representation of Γ.
Γ embeds into l(Γ ) Γ ↪→ l(Γ )
γ ∈ Γ γ 7→ [γ] where [γ] is the Dirac function at γ.
Within l(Γ ) let Convex-Hull(Γ) be the smallest convex set which
contains Γ. The points of Convex-Hull(Γ) are all the finite sums

t0[γ0] + t1[γ1] + · · ·+ tn[γn]

with tj ∈ [0, 1] j = 0, 1, . . . , n and t0 + t1 + · · ·+ tn = 1

The action of Γ on l(Γ ) preserves Convex-Hull(Γ).
Γ×Convex-Hull(Γ) −→Convex-Hull(Γ)
EΓ can be taken to be Convex-Hull(Γ) with this action of Γ.



Let X be a paracompact Hausdorff topological space with a given
continuous action of G on X.

G×X −→ X



The action of G on X is proper if :

The quotient space X/G (with the quotient topology) is
paracompact Hausdorff and

For each x ∈ X,∃ a triple (U,H,ϕ) such that:

I U is an open set of X with x ∈ U and with gp ∈ U whenever
g ∈ G and p ∈ U .

I H is a compact subgroup of G.

I ϕ : U → G/H is a continuous G-equivariant map from U to
G/H.



EG is a paracompact Hausdorff topological space with a given
proper action of G :

G× EG −→ EG

such that whenever X is a paracompact Hausdorff topological
space with a given proper action of G on X

I ∃ a continuous G-equivariant map f : X → EG.

I Any two continuous G-equivariant maps f0 : X → EG,
f1 : X → EG are homotopic through continuous
G-equivariant maps.



Examples of EG

G compact, EG = ·

G a Lie group with π0(G) finite EG = G/K where K is a
maximal compact subgroup of G.

G a reductive p-adic group EG = the affine Bruhat-Tits building
of G.

n,m two positive integers G = (Z/nZ)∗(Z/mZ)
E(G) = the tree on which G acts. See book Trees by J. P. Serre.



KG
j (EG) denotes the Kasparov equivariant K-homology

— with G-compact supports — of EG.

Definition

A closed subset ∆ of EG is G-compact if:
1. The action of G on EG preserves ∆.
and
2. The quotient space ∆/G (with the quotient space topology) is
compact.



Definition

KG
j (EG) = lim−→

∆⊂EG
∆ G-compact

KKj
G(C0(∆),C).

The direct limit is taken over all G-compact subsets ∆ of EG.
KG
j (EG) is the Kasparov equivariant K-homology of EG with

G-compact supports.



BC conjecture for exact groups

Conjecture

For any G which is locally compact, Hausdorff, second countable,
and exact

KG
j (EG)→ Kj(C

∗
rG) j = 0, 1

is an isomorphism



BC conjecture in general i.e. including non-exact groups

Conjecture

For any G which is locally compact, Hausdorff, and second
countable

KG
j (EG)→ Kj(C

∗
exactG) j = 0, 1

is an isomorphism



Corollaries of BC

Novikov conjecture = homotopy invariance of higher signatures

Stable Gromov Lawson Rosenberg conjecture (Hanke + Schick)

Idempotent conjecture

Kadison Kaplansky conjecture

Mackey analogy (Higson)

Exhaustion of the discrete series via Dirac induction
(Parthasarathy, Atiyah + Schmid, V. Lafforgue)

Homotopy invariance of ρ-invariants
(Keswani, Piazza + Schick)



G topological group
locally compact, Hausdorff, second countable

Examples

Lie groups (π0(G) finite) SL(n,R) OKX
p-adic groups SL(n,Qp)OKX
adelic groups SL(n,A)OKX
discrete groups SL(n,Z)



Let A be a G− C∗ algebra i.e. a C∗ algebra with a given
continuous action of G by automorphisms.

G×A −→ A

BC with coefficients for exact groups

Conjecture

For any G which is locally compact, Hausdorff, and second
countable and any G− C∗ algebra A

KG
j (EG,A)→ Kj(C

∗
r (G,A)) j = 0, 1

is an isomorphism.



Let A be a G− C∗ algebra i.e. a C∗ algebra with a given
continuous action of G by automorphisms.

G×A −→ A

BC with coefficients in general i.e. including non-exact groups

Conjecture

For any G which is locally compact, Hausdorff, and second
countable and any G− C∗ algebra A

KG
j (EG,A)→ Kj(C

∗
exact(G,A)) j = 0, 1

is an isomorphism.



Definition

KG
j (EG,A) = lim−→

∆⊂EG
∆ G-compact

KKj
G(C0(∆) , A).

The direct limit is taken over all G-compact subsets ∆ of EG.
KG
j (EG,A) is the Kasparov equivariant K-homology of EG with

G-compact supports and with coefficient algebra A.







Theorem (N. Higson + G. Kasparov)

Let Γ be a discrete (countable) group which is amenable or
a-t-menable. Let A be any Γ− C∗ algebra. Then

µ : KΓ
j (EΓ, A)→ KjC

∗
r (Γ, A)

is an isomorphism. j = 0, 1



Theorem (G. Yu + I. Mineyev, V. Lafforgue)

Let Γ be a discrete (countable) group which is hyperbolic (in
Gromov’s sense). Let A be any Γ− C∗ algebra. Then

µ : KΓ
j (EΓ, A))→ KjC

∗
r (Γ, A)

is an isomorphism. j = 0, 1



SL(3,Z) ??????








