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Nonparametric regression model (fixed design)

Assume that we observe the pairs (X1,Y1), . . . , (Xn,Yn) ∈ Rd × R
where

Yi = f (Xi ) + ξi , i = 1, . . . , n.

Regression function f : Rd → R is unknown

Errors ξi are independent Gaussian N (0, σ2) random variables.

Xi ∈ Rd are arbitrary fixed (non-random) points.

We want to estimate f based on the data (X1,Y1), . . . , (Xn,Yn).
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Approximating function, dictionary

We assume that there exists a function fθ(x) (known as a function
of θ and x) such that

f ≈ fθ

for some θ = (θ1, . . . , θM).

Possibly M � n
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Example: linear approximation, dictionary

Let f1, . . . , fM be a finite dictionary of functions, fj : Rd → R.
We approximate the regression function f by linear combination

fθ(x) =
M∑
j=1

θj fj(x) with weights θ = (θ1, . . . , θM).

We believe that

f (x) ≈
M∑
j=1

θj fj(x)

for some θ = (θ1, . . . , θM).
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Scenarios for linear approximation

(LinReg) Exact equality: there exists θ∗ ∈ RM such that
f = fθ∗ =

∑M
j=1 θ

∗
j fj

(linear regression, with possibly M � n parameters);

(NPReg) f1, . . . , fM are the first M functions of a basis (usually
orthonormal) and M ≤ n, there exists θ∗ such that f − fθ∗ is
small: nonparametric estimation of regression;

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a training sample
independent of the observations (X1,Y1), . . . , (Xn,Yn);

Weak learning, additive models etc.

Alexandre Tsybakov Lectures on sparsity



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Dantzig selector and LASSO for linear regression

Sparse exponential weighting (SEW)

Model, dictionary, approximation
Sparsity

Example: nonlinear approximation

We consider the generalized linear (or single-index) model

fθ(x) = G (θT x)

where G : R→ R is a known (or unknown) function.

Thus, we believe that

f (x) ≈ G (θT x)

for some θ = (θ1, . . . , θM), possibly with M � n.
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Sparsity of a vector

The number of non-zero coordinates of θ:

M(θ) =
M∑
j=1

I{θj 6=0}

The value M(θ) characterizes the sparsity of vector θ ∈ RM : the
smaller M(θ), the “sparser” θ.
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Sparsity of the model

Intuitive formulation of sparsity assumption:

f (x) ≈ fθ (“f is well approximated by fθ”)

where the vector θ = (θ1, . . . , θM) is sparse:

M(θ)� M.
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Sparsity and dimension reduction

Let θ̂OLS be the ordinary least squares (OLS) estimator. Let fθ be
linear approximation. Elementary result:

E‖f
θ̂OLS
− f ‖2

n ≤ ‖f − fθ‖2
n +

σ2M

n

for any θ ∈ RM where ‖ · ‖n is the empirical norm:

‖f ‖n =

√√√√1

n

n∑
i=1

f 2(Xi ).
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Sparsity and dimension reduction

For any θ ∈ RM the “oracular” OLS that acts only on the relevant
M(θ) coordinates satisfies

E‖foracle
θ̂OLS

− f ‖2
n ≤ ‖f − fθ‖2

n +
σ2M(θ)

n
.

This is only an OLS oracle, not an estimator. The set of relevant
coordinates should be known.
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Sparsity oracle inequalities

Do there exist true estimators with similar behavior? Basic idea:
Choose some suitable data-driven weights θ̂ = (θ̂1, . . . , θ̂M) and
estimate f by

f̂ (x) = f
θ̂
(x) =

M∑
j=1

θ̂j fj(x).

What to do when the approximation is non-linear (ex.
G (θT x))? Should we also plug in an estimator θ̂?

Can we find θ̂ such that f̃ = f
θ̂

or f̃ defined in differently
satisfies

E‖f̃ − f ‖2
n . ‖f − fθ‖2

n +
σ2M(θ)

n
, ∀θ?
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Sparsity oracle inequalities (SOI)

Realizable task: Construct an estimator f̃ satisfying a sparsity
oracle inequality (SOI)

E‖f̃ − f ‖2
n ≤ inf

θ∈RM

{
C‖f − fθ‖2

n + C ′
M(θ)(′′log M ′′)

n

}
with some constants C ≥ 1, C ′ > 0 and an inevitable extra
′′ log M ′′ in the variance term.

C = 1 ⇒ sharp SOI.
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Implications of SOI: Scenario (LinReg)

Assume that we have found an estimator f
θ̂

satisfying SOI. Some
consequences for different scenarios:

(LinReg) linear regression: f = fθ∗ for some θ∗. Using SOI:

E‖f
θ̂
− f ‖2

n ≤ C

{
‖f − fθ∗‖2

n +
M(θ∗) log M

n

}
=

CM(θ∗) log M

n

(the desired result for Scenario (LinReg)).
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Implications of SOI: Scenario (NPReg)

(NPReg) nonparametric regression. If f belongs to standard
smoothness classes of functions, minθ∈Θm ‖f − fθ‖n ≤ Cm−β

for some β > 0 (Θm = the set of vectors with only first m
non-zero coefficients, m ≤ M). Using SOI:

E‖f
θ̂
− f ‖2

n ≤ C inf
m≥1

{
min
θ∈θm
‖f − fθ‖2

n +
m log M

n

}
≤ C inf

m≥1

{
1

m2β
+

m log M

n

}
= O

((
log n

n

)2β/(2β+1)
)

for M ≤ n

(optimal rate of convergence, up to logs, in Scenario
(NPReg)).
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Implications of SOI: Scenario (Agg)

(Agg) aggregation of arbitrary estimators: in this case f1, . . . , fM
are preliminary estimators of f based on a pilot (training)
sample independent of the observations (X1,Y1), ..., (Xn,Yn).
The training sample is considered as frozen. Assume that SOI
holds with leading constant 1. Then:

E‖f
θ̂
− f ‖2

n ≤ inf
θ∈RM

{
‖f − fθ‖2

n +
CM(θ) log M

n

}
≤ min

1≤j≤M
‖f − fj‖2

n +
C log M

n

=⇒ f
θ̂

attains optimal rate of Model Selection type

aggregation log M
n (T., 2003).
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Implications of SOI: Scenario (Agg)

Similar conclusion holds for Convex aggregation. We restrict θ to
the simplex

ΘM = {θ ∈ RM : θj ≥ 0,
∑M

j=1 θj = 1}.

From SOI with leading constant 1 + “Maurey argument”:

E‖f
θ̂
− f ‖2

n ≤ inf
θ∈RM

{
‖f − fθ‖2

n +
CM(θ) log M

n

}
≤ inf

θ∈ΘM
‖f − fθ‖2

n + C ′
√

log M

n
.

=⇒ f
θ̂

attains optimal rate of Convex aggregation
√

log M
n

[Nemirovski (2000)].
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“Ideal” requirements for SOI

We would like to construct an estimator f̃ such that it satisfies:

SOI with leading constant 1 (sharp SOI);

this holds under no assumptions on the approximation
function; in the linear case, under no assumptions on the
dictionary f1, . . . , fM ;

the estimator is computationally feasible
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Penalized techniques (BIC, Lasso)

Penalize the residual sum of squares directly by M(θ) (BIC
criterion, Schwarz (1978), Foster and George (1994)):

θ̂BIC = arg min
θ∈RM

{
‖y − fθ‖2

n + γ
M(θ) log M

n

}
,

where γ > 0 and

‖y − fθ‖2
n ,

1
n

∑n
i=1

(
Yi − fθ(Xi )

)2
, y = (Y1, . . . ,Yn).

Remarks:

If the matrix X = (fj(Xi ))i ,j has orthnormal columns, BIC is
equivalent to hard thresholding of the components of XTy/n
at the level

√
γ(log M)/n.

Non-convex, discontinuous minimization problem.
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Sparsity oracle inequality for BIC (linear approximation)

Theorem. [Bunea/ T/ Wegkamp (2004)]: if γ > K0σ
2 for an

absolute constant K0, and with no assumption on the dictionary
f1, . . . , fM , the BIC estimator satisfies, with probability close to 1,

‖f
θ̂BIC
−f ‖2

n ≤ (1+ε) inf
θ∈RM

{
‖f − fθ‖2

n + C (ε)
M(θ) log M

n

}
, ∀ε > 0.

Remarks:

the BIC is realizable only for small M (say, M ≤ 20),

the leading constant is not 1,

C (ε) ∼ 1/ε.

no result for non-linear approximation
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LASSO

Second penalization technique: LASSO [Frank and Friedman
(1993, Bridge regression), Tibshirani (1996), Chen and Donoho
(1998, basis pursuit)]. Penalize the residual sum of squares not by
M(θ), as in the BIC, but by the `1-norm of θ:

θ̂L = arg min
θ∈RM

{
‖y − fθ‖2

n + 2r |θ|1
}
,

where |θ|1 =
∑M

j=1 |θj |, r > 0 a tuning constant. A sensible choice:

r ∼
√

log M

n
.

If the matrix X = (fj(Xi ))i ,j has orthonormal columns, LASSO
is equivalent to soft thresholding of the components of
XTy/n at the level r .
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Restricted eigenvalue assumption

For a vector ∆ = (aj)j=1,...,M and a subset of indices
J ⊆ {1, . . . ,M} write

∆J = (aj1{j ∈ J})j=1,...,M .

The Gram matrix: ΨM =
(
〈fj , fj ′〉n

)
1≤j ,j ′≤M (= XTX/n).

Assumption RE(s, c0). (Bickel, Ritov and T., 2007)

For an integer 1 ≤ s ≤ M and c0 > 0 there exists κ = κ(s, c0):

∆TΨM∆ ≥ κ|∆J |22

for all J ⊆ {1, . . . ,M} such that |J| ≤ s and |∆Jc |1 ≤ c0|∆J |1.
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More specific assumptions

Assumption RE is more general than several other assumptions on
the Gram matrix:

Coherence assumption (Donoho/Elad/Temlyakov),

“Uniform uncertainty principle” (Candès/Tao),

Incoherent design assumption (Meinshausen/Yu,
Zhang/Huang).

These papers focus on the linear regression scenario (LinReg).
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Sparsity oracle inequality for the LASSO

Theorem [Bickel, Ritov and T., 2009]

Let ‖fj‖n = 1, j = 1, . . . ,M. Fix some ε > 0. Let Assumption
RE(s, c0) be satisfied with c0 = 3 + 4/ε. Consider the LASSO
estimator f

θ̂L
with the tuning constant

r = Aσ

√
log M

n

for some A > 2
√

2. Then, for all M ≥ 3, n ≥ 1 with probability at
least 1−M1−A2/8 we have: ∀ θ ∈ RM : M(θ) = s,

‖f
θ̂L
− f ‖2

n ≤ (1 + ε)‖fθ − f ‖2
n + C (ε)

(
M(θ) log M

κ n

)
.
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Advantages of the LASSO: computationally simple, selects the
sparsity pattern [Bühlmann and Meinshausen (2004), Zhao and Yu
(2006), Lounici (2008)], ...

Disadvantages of the LASSO:

SOI for the LASSO holds under strong assumptions on the
dictionary involving minimal “restricted eigenvalues”.
Moreover, the assumptions depend on the (unknown) number
s of non-zero components of the oracle vector, or eventually
on the upper bound on this number. Such assumptions are
unavoidable: Candès and Plan (2009).

The leading constant in SOI is not 1.

How to deal with non-linear approximations?

Same problems with other `1 penalized techniques (Dantzig
selector, modifications of the Lasso).
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Dantzig selector and LASSO for linear regression

Scenario (LinReg): f = fθ∗ for some θ∗, so that we can rewrite
our model as the standard linear regression:

y = Xθ∗ + ξ

where the matrix X = (fj(Xi ))i ,j , i = 1, . . . , n, j = 1, . . . ,M and ξ
is the Gaussian random vector of noise.
Dantzig selector (Candès and Tao, 2007):

θ̂D , argmin
{
|θ|1 :

∣∣∣1
n

XT (y − Xθ)
∣∣∣
∞
≤ r
}
.

where | · |p denotes the `p norm in RM .
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Theorem [Bickel, Ritov and T., 2009]

Let ‖fj‖n = 1, j = 1, . . . ,M. Let Assumption RE(s, 3) hold and let

θ̂ be either LASSO or Dantzig selector with tuning parameter

r = Aσ
√

log M
n and A > 2

√
2. Then, for all M ≥ 3, n ≥ 1, with

probability at least 1−M1−A2/8 we have

|X (θ̂ − θ∗)|22/n ≤ C ′

κ

M(θ∗) log M

n
(SOI for LASSO /Dantzig)

|θ̂ − θ∗|pp ≤
C

κ
M(θ∗)

(√
log M

n

)p

, ∀ 1 ≤ p ≤ 2.
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Selection of the sparsity pattern

Selection of the sparsity pattern [Lounici (2008)]: under the
coherence assumption, with probability close to 1,

|θ̂ − θ∗|∞ ≤
C

κ

√
log M

n

where θ̂ is LASSO or Dantzig estimator; their thresholded versions
θ̃ satisfy:

P(Jθ̃ = Jθ∗)→ 1 if min
j∈Jθ∗

|θ∗j | >
C ′

κ

√
log M

n
.
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Remarks on the Dantzig selector

Advantages: extreme comutational simplicity. The
computation reduces to linear programming and can be
realized in higher dimensional models than for the Lasso.

Disadvantages: the same as for the Lasso.

Slightly less convenient than the Lasso when the model is not
exactly the linear one (e.g., in nonparametric regression
scenario). Needs extra conditions guaranteeing that the target
satisfies the Dantzig constraint.
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Exponential weighting

On the difference from Lasso and Dantzig selector, the method of
sparse exponential weighting requires no assumption on the dictio-
nary. Estimate f (x) by

f̃ EW (x) =

∫
RM

fθ(x)Sn(dθ)

where the probability measure Sn is given by

Sn(dθ) =
exp

{
− n‖y − fθ‖2

n/β
}
π(dθ)∫

RM exp
{
− n‖y − fw‖2

n/β
}
π(dw)

with some β > 0 and some prior measure π.
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Exponential weighting

For the linear approximation: f̃ EW = f
θ̂EW

where

θ̂EWj =

∫
RM

θjSn(dθ), j = 1, . . . ,M,

Bayesian estimator if β = 2σ2, but we need a larger β.

Non-discrete π: Computational issues?
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A PAC-Bayesian bound

Lemma [Dalalyan and T., 2007]

The estimator with exponential weights f̃ EW defined with β ≥ 4σ2

and any prior π satisfies:

E‖f̃ EW − f ‖2
n ≤ inf

P

{∫
‖fθ − f ‖2

n P(dθ) +
βK(P, π)

n

}
where the infimum is taken over all probability measures P on RM

and K(P, π) denotes the Kullback-Leibler divergence between P
and π.
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Sparsity prior

Choose a specific prior measure π with Lebesgue density q:

q(θ) =
M∏
j=1

τ−1 q0

(
θj/τ

)
, ∀θ ∈ RM ,

where q0 is the Student t3 density,

q0(t) ∼ |t|−4, for large |t|

and τ ∼ (Mn)−1/2. We will call this prior the sparsity prior. The
resulting estimator f̃ EW is called the Sparse Exponential
Weighting (SEW) estimator.
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SOI for the SEW estimator: Linear approximation case

Theorem [Dalalyan and T., 2007]

Let max1≤j≤M ‖fj‖n ≤ c0 <∞. Let fθ be linear in θ. Then for
β ≥ 4σ2 the estimator f

θ̂EW
with the sparsity prior satisfies:

E‖f
θ̂EW
− f ‖2

n ≤ inf
θ∈RM

{
‖fθ − f ‖2

n +
CM(θ)

n
log

(
1 +
|θ|1
√

Mn

M(θ)

)}

where |θ|1 is the `1-norm of θ.

No assumption on the dictionary.
Leading constant 1.
`1-norm of θ, but under the log.
Fast computation for at least M ∼ 103.
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SOI for the SEW estimator: generalized linear models

Assume now:

fθ(x) = G (xT θ).

Then we have the same result as for the linear approximation case
provided that

sup
θ

Spec

{
1

n

n∑
i=1

G ′′(XT
i θ)XiX

T
i

}
≤ c0 <∞.
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SEW estimator: discussion

SEW is not a penalized estimator.

θ̂EWj =

∫
RM

θjSn(dθ) =

∫
RM

θjgn(θ)dθ, j = 1, . . . ,M,

with posterior density gn(θ) = Sn(dθ)/dθ:

gn(θ) ∝ exp
{
− n‖y − fθ‖2

n/β − C
M∑
j=1

log(1 + θ2
j /τ)

}
Maximizer of this density (the MAP estimator):

θ̂MAP = arg min
θ∈RM

{
‖y − fθ‖2

n +
γ

n

M∑
j=1

log(1 + θ2
j /τ)

}
6= θ̂EW .
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Exponential weights: models with i.i.d. data

An i.i.d. sample Z1, . . . ,Zn from the distribution of an
abstract random variable Z ∈ Z.

Q(Z , fθ) a given real-valued loss (prediction loss).

Define the probability measure Sn on RM by

Sn(dθ) =
exp

{
−
∑n

i=1 Q(Zi , fθ)/β
}
π(dθ)∫

RM exp
{
−
∑n

i=1 Q(Zi , fw )/β
}
π(dw)

with some β > 0 and some prior measure π. Generalization of the
previous definition: we replace

n‖y − fθ‖2
n  

n∑
i=1

Q(Zi , fθ).
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Mirror averaging

Cumulative exponential weights (mirror averaging):

θ̂MA
j =

∫
RM

θjS(dθ), j = 1, . . . ,M, with S =
1

n

n∑
i=1

Si

cf. Juditsky/Rigollet/T (2008) [even more general method:
Juditsky/Nazin/T/Vayatis (2005)]. In a particular case we get
the “progressive mixture method” of Catoni and Yang.

Choose a prior measure π supported on a convex compact
θ ⊂ RM (e.g., on an `1 ball).
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Assumption JRT (2008).

The mapping θ 7→ Q(Z , fθ) is convex for all Z and there exists
β > 0 such that the function

θ 7→ E exp

(
Q(Z , fθ′)− Q(Z , fθ)

β

)
is concave on a convex compact set θ ⊂ RM for all θ′ ∈ θ.

Roughly: “strong convexity on the average”.
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PAC-Bayesian bound for mirror averaging

Define the average risk: A(θ) = EQ(Z , fθ).

Lemma (PAC-Bayesian bound).

Let f
θ̂MA be a mirror averaging estimator defined with β satisfying

Assumption JRT and any prior π supported on a convex compact
set θ. Then

EA(θ̂MA) ≤ inf
P

{∫
A(θ) P(dθ) +

βK(P, π)

n + 1

}
where the infimum is taken over all probability measures P on θ
and K(P, π) is the Kullback-Leibler divergence between P and π.

Proof follows the scheme of Juditsky, Rigollet and T. (2008), cf.
also Lounici (2007), Audibert (2009).
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SOI for Mirror Averaging

Theorem

Assume that sup|θ|1≤2R Spec{∇2A(θ)} <∞ for some R > 0. Let
f
θ̂MA be a mirror averaging estimator satisfying assumptions of the

PAC lemma, with the sparsity prior π truncated to
{θ : |θ|1 ≤ 2R} and τ ∼ 1/

√
M(n ∨M). Then

EA(θ̂MA) ≤ inf
|θ|1≤R

{
A(θ) +

CR2M(θ)

n
log

(
C ′R

√
M(n ∨M)

M(θ)

)}
.

No restrictive assumption on the dictionary.

Leading constant 1.
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Comparison with SOI for the LASSO

The LASSO type estimators

θ̂ = arg min
θ∈RM

1

n

n∑
i=1

Q(Zi , fθ) + r
M∑
j=1

|θj |

 .

van de Geer (2008), Koltchinskii (2008,2009):

EA(θ̂) ≤ inf
|θ|1≤R

(
3 A(θ) +

CR2M(θ) log M

κ n

)
where κ is a “Restricted Eigenvalue”, can be very small.
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Example: Gaussian regression, squared loss

Gaussian regression with random design :
Z = (X ,Y ), X ∈ Rd , Y ∈ R such that

Y = f (X ) + ξ,

ξ|X ∼ N (0, σ2), X ∼ PX , ‖f ‖∞ ≤ L.

Assumption on the dictionary: ‖fj‖∞ ≤ L, j = 1, . . . ,M.

The loss function
Q(Z , fθ) =

(
Y − fθ(X )

)2
where fθ =

∑M
j=1 θj fj .

Then A(θ) = EQ(Z , fθ) = ‖fθ − f ‖2
X + σ2, ‖f ‖2

X ,
∫

f 2dPX .
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SOI for regression with squared loss

Corollary

Under the conditions of this example, for all β ≥ 2σ2 + 8L2,

E ‖f
θ̂MA−f ‖2

X ≤ inf
θ∈θM

{
‖fθ − f ‖2

X +
CM(θ)

n
log

(
C ′
√

M(n ∨M)

M(θ)

)}
.

Here ΘM is the simplex:

ΘM = {θ ∈ RM : θj ≥ 0,
M∑
j=1

θj = 1}.
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Example: density estimation with L2 loss

Z = X ∈ Rd with density f , such that ‖f ‖∞ ≤ L .

Assumption on the dictionary: f1, . . . , fM are probability
densities such that ‖fj‖∞ ≤ L.

The loss function:

Q(X , fθ) = ‖fθ‖2 − 2fθ(X ) where ‖f ‖2 =

∫
f 2(x)dx .

The associated risk:

A(θ) = EQ(X , fθ) = ‖f − fθ‖2 − ‖f ‖2.
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SOI for density estimation with L2 loss

Corollary

Under the conditions of this example, for all β > 12L,

E ‖f
θ̂MA−f ‖2 ≤ inf

θ∈ΘM

{
‖fθ − f ‖2 +

CM(θ)

n
log

(
C ′
√

M(n ∨M)

M(θ)

)}
.

Here ΘM is the simplex:

ΘM = {θ ∈ RM : θj ≥ 0,
M∑
j=1

θj = 1}.
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Modified SEW estimators

Take the modified sparsity prior

q(θ) ∝

 M∏
j=1

e−ω(αθj )(
1 + |θj |/τ

)2

 1{|θ|1 ≤ R}

where ω(·) is Huber’s function

ω(t) =

{
t2, if |t| ≤ 1,
2|t|, if |t| > 1,

α and τ are small (ex.: α ∼ M−1, τ ∼ n−1/2), R is large (R ∼ M).
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Computation of SEW estimators

Consider the linear regression scenario:

y = Xθ + ξ.

X is a n ×M deterministic design matrix, θ ∈ RM is an unknown
vector and ξ ∈ RM is a Gaussian vector with i.i.d. components,
with variances σ2. The SEW estimator

θ̂EW ,
∫
RM

u g(u) du

where the posterior density

g(u) ∝ exp(−V (u))

V (u) = β−1‖y − X u‖2 + 2
M∑
j=1

log(τ2 + u2
j ).
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Langevin Monte Carlo

Remark: the posterior density g(·) is the invariant density of the
Langevin diffusion

Lt = −∇V (Lt) dt +
√

2 dWt , L0 = 0, t > 0.

Here Wt is the M-dimensional Brownian motion.

Let now η1, η2, . . . be i.i.d. standard normal random vectors. Set

L0 = 0, Lk+1 = Lk − h∇V (Lk) +
√

2h ηk , k = 0, 1, . . . .

Then

1

[Th−1]

[Th−1]∑
k=1

Lk ≈
1

T

∫ T

0
Lt dt

a.s.−−−−→
T→∞

∫
RM

ug(u) du = θ̂EW .
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Simulations

Example 1: Compressed sensing

The entries of the matrix X are i.i.d. Rademacher random
variables independent of the noise ξ.

θj = 1{j ≤ S} and σ2 =
S

9n
.

We apply the SEW estimator using Langevin Monte-Carlo with

τ = 4σ/
√

M, β = 4σ2, h = 0.0001.
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Simulations
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Figure: Typical result for Example 1 with n = 200, M = 500, S = 10,
h = 10−4, T = 5. SEW estimates of the first 50 coefficients are plotted. The
prediction error 1

n
|X (θ̂− θ)|22 = 0.0021. The time of computation ∼ 30 seconds.
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Example 1: Compressed sensing

Typical outcome for n = 200, M = 500 and S = 20. Left panel:
SEW, right panel: LASSO
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Example 2: Image denoising

Input: n, k positive integers and σ > 0.

We generate n vectors Ui of R2 uniformly distributed in [0, 1]2.

Covariates φj(u) = 1{[0,j1/k]×[0,j2/k](u).

Errors: we generate a centered Gaussian vector ξ with
covariance matrix σ2I .

Response: Yi = (φ1(Ui ), . . . , φk2(Ui ))T θ + ξi where
θ = [1{(j ∈ {10, 100, 200})]′.

Tuning parameters: the same rule as previously.
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Image denoising

The original image and its sampled noisy version.
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Image denoising

Estimated images from observations with noise magnitudes 0.1,
0.5 and 1.

Alexandre Tsybakov Lectures on sparsity



Introduction
Sparsity oracle inequalities(SOI)

BIC and LASSO
Dantzig selector and LASSO for linear regression

Sparse exponential weighting (SEW)

A PAC-Bayesian bound
Sparsity prior
SOI for the SEW estimator
PAC-Bayesian bound for mirror averaging
SOI for Mirror Averaging
Examples
Computation of SEW estimators

Image denoising

Prediction errors and their standard deviations

σ n = 100 n = 200
SEW Lasso Ideal LG SEW Lasso Ideal LG

2 0.210 0.759 0.330 0.187 0.661 0.203
(0.072) (0.562) (0.145) (0.048) (0.503) (0.086)

4 0.420 2.323 0.938 0.278 2.230 0.571
(0.222) (1.257) (0.631) (0.132) (1.137) (0.324)
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